Source code for tno.quantum.optimization.qubo.solvers._dqo._daqo_result

"""This module contains the ``DAQOResult`` class."""

from __future__ import annotations

import itertools
from collections.abc import Mapping
from typing import TYPE_CHECKING, Any, SupportsFloat, SupportsInt

import numpy as np
from tno.quantum.optimization.qubo.components import Freq, ResultInterface
from tno.quantum.utils.validation import check_arraylike, check_ax, check_int

if TYPE_CHECKING:
    from typing import Self

    from matplotlib.axes import Axes
    from numpy.typing import ArrayLike
    from tno.quantum.optimization.qubo.components import QUBO
    from tno.quantum.utils import BackendConfig, BitVectorLike


[docs] class DAQOResult(ResultInterface): """Implementation of `ResultInterface` for :py:class:`DAQOResult`."""
[docs] def __init__( # noqa: PLR0913 self, best_bitvector: BitVectorLike, best_value: SupportsFloat, freq: Freq, n_layers: SupportsInt, schedule: ArrayLike, backend: BackendConfig, ) -> None: """Init :py:class:`DAQOResult`. Args: best_bitvector: Bitvector corresponding to the best result. best_value: Objective value of the best result. freq: Frequency object with the found energies and number of occurrences. n_layers: Number of layers used in the DAQO circuit. schedule: Annealing schedule used in the DAQO circuit. backend: Backend used to sample the circuit. """ super().__init__(best_bitvector, best_value, freq) self.n_layers = check_int(n_layers, "n_layers", l_bound=1) self.backend = backend self.schedule = check_arraylike( schedule, "schedule", ndim=2, shape=(2, self.n_layers) )
[docs] @classmethod def from_result( cls, qubo: QUBO, raw_result: Mapping[str, int], properties: dict[str, Any] ) -> Self: """Construct :py:class:`QADAQOResultOAResult` from `raw_result` and the `qubo`. Args: qubo: QUBO to evaluate the given bitvectors. raw_result: Mapping with bitstrings as keys and frequencies as values. properties: Dictionary containing properties used to solve QUBO. Returns: A :py:class:`DAQOResult` containing the best bitvector, best value and frequency of the best bitvector of `raw_result` based on the given `qubo`. The best bitvector has the lowest energy (value) based on the given `qubo`. When there are ties, the bitvector with the highest frequency is returned. Raises: ValueError: If `raw_result` is empty. """ freq = Freq( bitvectors=raw_result.keys(), energies=map(qubo.evaluate, raw_result.keys()), num_occurrences=raw_result.values(), ) if not freq.energies: msg = "Argument `raw_result` is empty" raise ValueError(msg) # Find the solution index with the lowest energy. Break ties by returning the # solution index with the highest number of occurrences. energies = np.array(freq.energies) num_occurrences = np.array(freq.num_occurrences) (min_indices,) = np.where(energies == energies.min()) best_idx = min_indices[np.argmax(num_occurrences[min_indices])] return cls( best_bitvector=freq.bitvectors[best_idx], best_value=freq.energies[best_idx], freq=freq, n_layers=properties["n_layers"], schedule=properties["schedule"], backend=properties["backend"], )
[docs] def plot_shots_histogram(self, ax: Axes | None = None) -> None: """Plot the histogram of the output of the final circuit. Args: ax: Optional matplotlib ``Axes`` to draw on. If ``None`` (default) create a new figure with ``Axes`` to draw on. """ ax = check_ax(ax, "ax") n_bits = len(self.best_bitvector) x_values = ["".join(bits) for bits in itertools.product("01", repeat=n_bits)] height = np.zeros_like(x_values) for bitvector, _, n in self.freq: i = int(str(bitvector), 2) height[i] += n ax.bar(x_values, height) ax.set_xlabel("Solution") ax.set_ylabel("Number of Shots")
[docs] def plot_schedule(self, ax: Axes | None = None) -> None: """Plot the annealing schedule. Args: ax: Optional matplotlib ``Axes`` to draw on. If ``None`` (default) create a new figure with ``Axes`` to draw on. """ ax = check_ax(ax, "ax") x = range(self.n_layers) ax.plot(x, self.schedule[0, :], label="schedule initial Hamiltonian") ax.plot(x, self.schedule[1, :], label="schedule problem Hamiltonian") ax.set_xlabel("Layer") ax.set_ylabel("Annealing schedule") ax.legend()