Source code for tno.quantum.ml.datasets._linearly_separable

"""Module for linearly separable dataset."""

from __future__ import annotations

import numpy as np
from numpy.typing import NDArray
from sklearn import datasets
from tno.quantum.utils.validation import check_int

from tno.quantum.ml.datasets._utils import _safe_train_test_split


[docs] def get_linearly_separable_dataset( n_samples: int = 100, random_seed: int = 0, test_size: float | int | None = None, ) -> tuple[ NDArray[np.float64], NDArray[np.int_], NDArray[np.float64], NDArray[np.int_] ]: r"""Generate a random dataset that is linearly separable. This function wraps :func:`~sklearn.datasets.make_classification` of :mod:`sklearn.datasets` with the following fixed arguments: `n_features=2`, `n_redundant=0`, `n_informative=2` and `n_clusters_per_class=1`. Afterwards, uniformly distributed noise is added. Example usage: >>> from tno.quantum.ml.datasets import get_linearly_separable_dataset >>> X_train, y_train, X_val, y_val = get_linearly_separable_dataset() >>> print(f"{X_train.shape=}\n{y_train.shape=}\n{X_val.shape=}\n{y_val.shape=}") X_train.shape=(75, 2) y_train.shape=(75,) X_val.shape=(25, 2) y_val.shape=(25,) Args: n_samples: Total number of generated data samples. random_seed: Seed to give to the random number generator. Defaults to 0. test_size: The proportion of the dataset that is included in the test-split. Either represented by a percentage in the range [0.0, 1.0) or as absolute number of test samples in the range [1, inf). Defaults to 0.25. Returns: A tuple containing ``X_training``, ``y_training``, ``X_validation`` and ``y_validation`` of a dataset that is linearly separable. """ # Validate input n_samples = check_int(n_samples, name="n_samples", l_bound=1) random_seed = check_int(random_seed, name="random_seed", l_bound=0) X, y = datasets.make_classification( n_samples=n_samples, n_features=2, n_redundant=0, n_informative=2, random_state=random_seed, n_clusters_per_class=1, ) rng = np.random.default_rng(random_seed) X += 2 * rng.uniform(size=X.shape) # Split into training and validation data sets # Split into training and validation data sets return _safe_train_test_split(X, y, test_size=test_size, random_state=random_seed)