vc.variational_classifier module
This module implements a scikit-learn compatible, variational quantum classifier.
Usage:
vc = VariationalClassifier()
vc = vc.fit(X_training, y_training, n_iter=60)
predictions = vc.predict(X_validation)
- class vc.variational_classifier.VariationalClassifier(batch_size=5, backend=None, model=None, optimizer=None, use_bias=False, random_init=True, warm_init=False, random_state=None)[source]
Bases:
ClassifierMixin
,BaseEstimator
Variational classifier.
- __init__(batch_size=5, backend=None, model=None, optimizer=None, use_bias=False, random_init=True, warm_init=False, random_state=None)[source]
Init VariationalClassifier.
The default values for
backend
,model
, andoptimizer
are defined invc.variational_classifier.get_default_if_none()
.- Parameters:
batch_size (
int
) – batch size to be used during fitting.backend (
Optional
[Dict
[str
,Any
]]) – see docstring ofget_model()
.model (
Optional
[Dict
[str
,Any
]]) – see docstring ofget_model()
.optimizer (
Optional
[Dict
[str
,Any
]]) – see docstring ofget_optimizer()
use_bias (
bool
) – set toTrue
if a bias parameter should be optimized over.random_init (
bool
) – set toTrue
if parameters to optimize over should be initialized randomly.warm_init (
bool
) – set toTrue
if parameters from a previous call to fit should be used.random_state (
Optional
[int
]) – random seed for repeatability.
- vc.variational_classifier.get_default_if_none(backend=None, model=None, optimizer=None)[source]
Set default value if the one provided is
None
.- Parameters:
backend (
Optional
[Dict
[str
,Any
]]) – see docstring ofget_model()
. default value{"name": "default.qubit", "options": {}}
.model (
Optional
[Dict
[str
,Any
]]) – see docstring ofget_model()
default value{"name": "modulo_model", "options": {"n_layers": 2, "n_trainable_sublayers": 2, "scaling": 0.5}}
.optimizer (
Optional
[Dict
[str
,Any
]]) – see docstring ofget_optimizer()
default value{"name": "adam", "options": {}}
.
- Return type:
Tuple
[Dict
[str
,Any
],Dict
[str
,Any
],Dict
[str
,Any
]]- Returns:
Default backend, model, optimizer.