vc.optimizers module

This module is used to define optimizers for training quantum models.

vc.optimizers.get_optimizer(parameters, optimizer)[source]

Create instance of an optimizer.

Parameters:
  • parameters (Iterable[TensorType]) – Tensor objects to optimize over.

  • optimizer (Mapping[str, Any]) –

    Mapping of the form {"name": str, "options": dict}. The value for "name" is used to determine the optimizer class. The value for "options" should be a dict and is passed as kwargs to the constructor of the corresponding optimizer class. The supported optimizers are:

    • SDG:
      • name: "stochastic_gradient_descent"

      • options: see SDG kwargs

    • Adam

Return type:

Optimizer

Returns:

Instance of a torch optimizer.