TNO Quantum

TNO Quantum provides generic software components aimed at facilitating the development of quantum applications.

TNO Quantum - Communication - QKD Key Rate

This repository provides python code to compute optimal protocol parameters for different quantum key distribution (QKD) protocols.

The codebase is based on the following TNO papers:

The following quantum protocols are being supported:

The following classical error-correction protocols are being supported:

The presented code can be used to

  • determine optimal parameter settings needed to obtain the maximum key rate,

  • correct errors in exchanged sifted keys for the different QKD protocols,

  • apply privacy amplification by calculating secure key using hash function.

Quick Install

The QKD Key Rate module can easily be installed using pip as follows:

pip install tno.quantum.communication.qkd_key_rate

Examples

The following code demonstrates how the bb84 protocol can be used to calculate optimal key-rate for a specific detector with attenuation=0.2.

from tno.quantum.communication.qkd_key_rate.protocols.quantum.bb84 import (
   BB84FullyAsymptoticKeyRateEstimate,
)
from tno.quantum.communication.qkd_key_rate.test.conftest import standard_detector

detector_Bob = standard_detector.customise(
   dark_count_rate=1e-8,
   polarization_drift=0,
   error_detector=0.1,
   efficiency_party=1,
)

fully_asymptotic_key_rate = BB84FullyAsymptoticKeyRateEstimate(detector=detector_Bob)
mu, rate = fully_asymptotic_key_rate.optimize_rate(attenuation=0.2)

The following example demonstrates usage of the winnow error correction protocol.

import numpy as np

from tno.quantum.communication.qkd_key_rate.base import Message, Permutations, Schedule
from tno.quantum.communication.qkd_key_rate.protocols.classical.winnow import (
   WinnowCorrector,
   WinnowReceiver,
   WinnowSender,
)

error_rate = 0.05
message_length = 10000
input_message = Message.random_message(message_length=message_length)
error_message = Message(
   [x if np.random.rand() > error_rate else 1 - x for x in input_message]
)
schedule = Schedule.schedule_from_error_rate(error_rate=error_rate)
number_of_passes = np.sum(schedule.schedule)
permutations = Permutations.random_permutation(
   number_of_passes=number_of_passes, message_size=message_length
)

alice = WinnowSender(
   message=input_message, permutations=permutations, schedule=schedule
)
bob = WinnowReceiver(
   message=error_message, permutations=permutations, schedule=schedule
)
corrector = WinnowCorrector(alice=alice, bob=bob)
summary = corrector.correct_errors()

For more usage examples see the the documentation of the individual modules

(End)use Limitations

The content of this software may solely be used for applications that comply with international export control laws.